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VISCOSITY OF THE LIQUID PHASE IN A DISPERSION
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The motion of a dispersion (continuous medium and particles) may be
described [1] viathe equations of conservation of matter and momentum
for the two phases separately, Here it is necessary to know how the vis-
cosity, pressure in the solid, and other quantities vary with the param-
eters of the motion. This difficulty occurs even for the very simple
model where the internal siresses in the dispersed phase are taken as
zero, as there is then an uncertainty as to the viscosity of the medium,
which is not a material constant and is dependent on the concentration.
There is alsoc uncertainty as to the forces of interaction between the
phases. There are numerous empirical relationships for these forces,
and also a theoretical one[ 2]. Here an analogous method is applied

to derive an expression for the viscosity of the liquid. This viscosity
applies to a liquid filtering through a porous medium in the particular
case where the concentration is such as to produce close packing of the
solid particles. The result corresponds to standard formulas in the case
of low concentrations,

We envisaged hindered flow of the medium around
the particles on the basis of a cellular model, in which
to each particle of radius a there corresponds a
spherical cell of radius b > a concentric with the par-
ticle, the perturbations caused by the particle being
localized in that cell [3]. The surfaces of such cells
represent surfaces of symmetry separating the zones
of influence of the particles. We equate the volume of
a cell to the specific volume of a particle in the system
to get

b=aph. @)

The general method of [4] will be employed. In the
Stokes approximation, the equation for the velocity
perturbations in the liquid and particle is

AV Xxv]=0.
Let the flow unperturbed by the particle be defined by
U0 = Uiy,

oy =0, oy = o .

As div v = 0, the vectors v may be represented as
the rotors of certain axial vectors, and the latter
shouldbe linearly dependent onthe tensor ok, so they
may be written in a single way, and hence we get for
the velocities outside and within a particle

v =V X{VX(@VH)l, aVf=odf]0zy »

in which f is a scalar function of r. The equation for f,
A? {V X (och)] =0 ’
has the general solution
f=pr +yrt +F0r fert+7,

in which 8, v, 8. ¢, and ¢ are arbitrary constants.

The velocities in the range 0 = r = b must be
finite; we use a prime to denote quantities referring
to the flow within a particle. Then

v=(2ar+ 222 (anmn +

+<——§—Ar3+—§——%—)(an),

v = % A7 ((an)m)n - (—g A3 Dr> (@n) ,
p=wo (g A+ 2 (@),

P =W A A7 ((@n)n)+ p, @)

in which n = r/r, while pg isthe change inthe pressure
discontinuity at the surface of a particle due to the
surface tension, the change being due to distortion of
this surface r = @, where we must have continuity in
the normal and tangential components of the total ve-
locities, while the normal component of the velocity
must be zero. These quantities are, in general, arbi~
trary at the surface of a cell.

There have been many discussions concerning the boundary con-
ditions at r = b, and many different conditions have heen proposed.
Choice of these conditions is one of the major objections to the model
[5]. On the other hand, simple physical considerations lead to a single
boundary condition at r = b, since the essence of the cell model con-
sists in averaging and smoothing the volumes taken up by the particles,
the cell being a measure of this smoothed volume. This averaging is
equivalent to the assumption that the particles are identical, as are the
cells, which may be justified if the number of particles in the system
is sufficiently large; but then symmetry considerations at once show
that the radial component of the velocity perturbation must be zero at
r = b. Of course, it is clear that the cell model is only an approxi-
mation to a real system; but the model gives good results for the forces
between the phases and agrees well with empirical relationships {2].
Moreover, a similar model has been used with success in kinetic theory,
so we may reasonably expect that this model will give satisfactory
agreement with experiment as regards the effective viscosity.

There are thus five arbitrary constanis and py (an additional degree
of freedom in this problem) to satisfy six boundary conditions, and pg
appears only in the condition for continuity of the normal stresses at
r = &; thus the problem canbe simplified by discarding this boundary
condition, as has been done previously [2, 6], if the derivation of po
is of no particular interest. In fact, if we assume that the perturbation
of the surface of a particle is smali, all the boundary conditions (apart
from the condition of continuity for the normal stresses) may be written
for an unperturbed spherical surface, since all terms related to surface
perturbation are of high orders of smallness. On the other hand, pg is
of the same order as the other terms in the condition for continuity of
the normal stresses, and the condition itself defines the a priori unknown
distortion of the surface of a particle. An analogous situation arises in
the case of flow around a body coated with a liquid film [6], and also
in relation to the forces of phase interaction in 2 disperse system [2].



28 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

So far as we are aware, this feature has never been explicitly
pointed out in the literature, which has led to misunderstandings.* We
have therefore added an appendix in which we consider more fully the
resistance to a drop and the distortion of the drop.
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The expressions for the constants in (2) are as
follows:

Aa? = A_(':T) (5% +2) & — 3xE"],

B 1
FTAm Yy PR 22— 1),

c 1
= w2 =) E,

i

A/

S

2D 1
=D =gy G+ 8 —589,

A%, B) = —2(x+ 1) + TuE® — (5 — 2) &7,

E=al/b=ph,  n=p"[p. 3)
The motion is completely defined by expressions
(3), taken with (2) and with pg [found simply from the
continuity of the normal stresses, which has not been

used in (3)].

The tensor for the mean stresses equals the mean
taken over the cell volume for the tensor for the mo-
mentum flux density in the system

Gy = — <Py b+ (G 42> »

Ul‘i
where it is readily seen that (p) =0, so we have

<o) ———Vio [u' g (;-:i +ﬂ)dV+

Oy
r<a

+ o S ("’”f+-"’ﬁ)dv],

[Z ox;
a<r<b

in which Vg is cell volume. Gauss's theorem, with the
continuity of the velocity at r = a, gives

Copd = -17”% éé (0:dSy + vpdS;) =

r==b

*See, for example, Slezkin's abstract of [8] (Ref. Zh, Mekhanika, no.

6, B648, 1966).

— Ambdo, Mo {2 14 4 B
=l 2 (3 — 45 AV + g5 57)-

We introduce £ = a/b and note that (1) gives £ = p,
S0

5% -2 — s xE2 —4fs (x — 1) €7
o) == 2patix {1 + Z(x+ D —THE £ (Gx— 2 & :l

Then the effective viscosity u(p) is

B -k 2 — DBt — s (— 1) E7 7.
pO) = [+ G e e 0 @

In the limit w — « (suspension of solid particles)

5 — 2582 — 457 p) ] ®)

@ (p) = Mo <1 + O €5 4 BE?

In the limit » — 0 (system of gas bubbles in a liquid)
2 L4 kT
B (p) = (1 -+ ﬁ:’%p) (6)

It is readily seen that (4) in the case p < 1 (dilute

‘systems) becomes Taylor's formula, while (5) and (6)

become Einstein's formula and Mark's formula, re-
spectively, Thefigure shows u(l)/uo and [.L(Z)//JO, where
the dashed lines represent the latter two standard
formulas.

The p(p) given by (4)—(6) is the effective viscosity
for a liquid passing through a porous body with po-
vosity € =1 — p. The total momentum transfer in the
system consists of several parts, which are, in gen-
eral, interdependent:

1) momentum transfer within the liquid;

2) momentum transfer related to local pulsation
movements of the particles;

3) momentum transfer due to friction between par~-
ticles, inhomogeneity in the external forces, etc.

It is clear that relations (4)—(6) describe only the
part of the momentum transfer associated with move-
ment of the liquid phase; p(p) coincides with the vis-
cosity of the system as a whole only when the latter
two components in the momentum transfer are neg-
ligible relative to the first. Certain results [9] allow
one to elucidate the necessary conditions for smallness
of the second component. The third component may be
considered as small if the concentration is not too
close to the close-packing concentration.

It appears to be usual in most of the papers known
to us to ignore the difference between the viscosity of
the liquid phase and the total effective viscosity of the
system; in particular, this is so in most papers on the
cell model. For this reason, some results, in partic-
ular Simha's formula 3], relate to neither viscosity.

Most experiments [7] on suspensions of moderate
concentration fail to meet the conditions for agreement
between the viscosities of the liquid phase and the
suspension, so these experiments are not suitable for
testing (4)~(6); but there are data (e.g., [8] on the
creep of solutions of concrete) that indicate that Ein-
stein's formula applies approximately not only for p
from 0 to 2—3% (as is usually assumed) but also for



JOURNAL OF APPLIED MECHANICS AND TECHNICATL PHYSICS 29

all p up to 50~60%. The densities of the phases were
approximately identical under the conditions of these
experiments, and Archimedes' number was extremely
small, mainly on account of the high viscosity of the
cement base that served as the dispersion medium.
The conditions of smallness for the internal stresses
in the dispersed phase were therefore met for nearly
all p, and it is possible to compare the experiments
with the p{p) of (4)—(6). Thefigure shows that u{p) can
actually be found from Einstein's formula over a wide
range in p.

There is also the anomalous-viscosity effect, in
which the measured viscogity of a suspension is some~-
what less than the value indicated by Einstein's for-
mula. This corresponds to the region of p not too
large in the figure.

The p(p) of (5) characterizes the viscous behavior
of a filtering liquid and defines the viscous term that
can be added when necessary to the Darcy filtration
equations. In particular, a term of the form

1 (0) 0%u; / Ox;0z;
may be entered in the equations of relative motion
(interphase slip) for a fluidized bed [10].

APPENDIX

Distortion of 4 moving drop in a viscous liquid, We solve the equa-
tions of motion within and outside the drop, neglecting inertial terms,
10 ge[

b b
z7r=<% + Tz—i—u)cosﬁ,
n b )
v9=(§r—3~—-2—:~u)sm6, p = by [r?cosH,

v, = (a1r? 4 az) cos B, vy =(—- 217 — @3) sin 6,

P =p 10a;r cos §

in which primes denote quantities for flow within the drop and u is the
speed of the liquid at an infinite distance from the drop. The drop may
be considered as spherical to small quantities of the first order, and we
get the following results from the conditions for continuity of the veloc-
ity, the tangential component of the stress, and zero radial motion at
the surface of the drop:

L L L ek

RS 2 p+ps R 2 ptp
12 u

“R = e TR

Simple steps then give the standard formula for the resistance;
but the condition for continuity in the normal stresses at r = ¢ is not
obeyed, and at that point we have the addirional pressure discon-
tinuity

U 9 u
Pa=p—rP ="

o
T pA_pu,cosﬂ-

We assume that the equation for the perturbed sphere ist =a +

+ §8), £ < a, to express pg via derivatives with respect to §, where-
upon

2% | cos® df 9 uR
“dor +sm9 P rFE=—"7" PREETE

5cos8 .

The general solution of this equation is

3 uR pp
C(e)zh— g ptw

Insin @ +

1-—cos0 St (sl = const
+ ln1 -¢cos 6 + cos @ —{—.s-.z]cose sz=(':onsb)‘
We choose s; so that £(6) has no singularities at © equal 10 0 and 7
to get

4 —cos0

1n1+cose + cose]—}-swow s

X ¢os 6 Lln sin @ —

while s, is determined from the condition of constant volume of the
drop:

n

S (@ 42 (0))sin 0 d = 243,

0

The condition for continuity of the normal stress thus defines the
distortion of the drop and has no application to the derivation of v, v',
p, or the formula for the resistance. This feature may be formally
taken into account by putting p' = p'(10ayr + az)cosd, i e., by intro-
ducing a new constant g into the expression for p', as has been done
previously [2, €].
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